Lehrstuhl für Theoretische Physik

Staudtstraße 7
91058 Erlangen

Untergeordnete Organisationseinheiten

Professur für Theoretische Physik
Professur für Theoretische Physik
Professur für Theoretische Physik


Allgemeine Relativitätstheorie und Alternative Theorien der Gravitation
Hochenergiephysik und Astroteilchenphysik
Mathematische Physik

Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 8 Go to next page Go to last page

Kisielowski, M. (2019). Relation Between Regge Calculus and BF Theory on Manifolds with Defects. Annales Henri Poincaré, 20(5), 1403-1437. https://dx.doi.org/10.1007/s00023-018-0747-6
Kisielowski, M., & Lewandowski, J. (2019). Spin-foam model for gravity coupled to massless scalar field. Classical and Quantum Gravity, 36(7). https://dx.doi.org/10.1088/1361-6382/aafcc0
Giesel, K., Singh, P., & Winnekens, D. (2019). Dynamics of Dirac observables in canonical cosmological perturbation theory. Classical and Quantum Gravity, 36(8), 085009. https://dx.doi.org/10.1088/1361-6382/ab0ed3
Elizaga de Navascués, B., Mena Marugan, G.A., & Prado, S. (2019). Asymptotic diagonalization of the fermionic Hamiltonian in hybrid loop quantum cosmology. Physical Review D, 99(6). https://dx.doi.org/10.1103/PhysRevD.99.063535
Fey, S., Kapfer, S., & Schmidt, K.P. (2019). Quantum Criticality of Two-Dimensional Quantum Magnets with Long-Range Interactions. Physical Review Letters, 122(1). https://dx.doi.org/10.1103/PhysRevLett.122.017203
Sahlmann, H., Kaminski, W., & Kisielowski, M. (2018). Asymptotic analysis of the EPRL model with timelike tetrahedra. Classical and Quantum Gravity, 35(13). https://dx.doi.org/10.1088/1361-6382/aac6a4
Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012. https://dx.doi.org/10.1088/1361-6382/aacda2
Sahlmann, H., & Eder, K. (2018). Quantum theory of charged isolated horizons. Physical Review D, 97(8). https://dx.doi.org/10.1103/PhysRevD.97.086016
Elizaga de Navascués, B., Martin de Blas, D., & Mena Marugan, G. (2018). Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology. Physical Review D - Particles, Fields, Gravitation and Cosmology, 97, 043523-1 - 043523-15. https://dx.doi.org/10.1103/PhysRevD.97.043523
Matas, B., Giesel, K., & Kobler, M. (2018). The Lewis-Riesenfeld Invariant in the context of a Loop Quantum Cosmology quantisation (Bachelor thesis).
Zwicknagel, E.-A., Giesel, K., & Liegener, K. (2018). Expectation Values of Holonomy-Operators in Cosmological Coherent States for Loop Quantum Gravity (Bachelor thesis).
Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005. https://dx.doi.org/10.1142/S0218271818300057
Weigl, S., Giesel, K., & Liegener, K. (2018). Implications from Different Regularisations for the Canonically Quantised k=1 FLRW Spacetime (Bachelor thesis).
Engle, J., Hanusch, M., & Thiemann, T. (2017). Uniqueness of the Representation in Homogeneous Isotropic LQC. Communications in Mathematical Physics, 354(1), 231-246. https://dx.doi.org/10.1007/s00220-017-2881-2
Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces II. Quantum formalism. Journal of Geometry and Physics, 116, 10-51. https://dx.doi.org/10.1016/j.geomphys.2017.01.011
Lanery, S., & Thiemann, T. (2017). Projective loop quantum gravity. II. Searching for semi-classical states. Journal of Mathematical Physics, 58(5). https://dx.doi.org/10.1063/1.4983133
Dhandhukiya, S., & Sahlmann, H. (2017). Towards Hartle-Hawking states for connection variables. Physical Review D, 95(8). https://dx.doi.org/10.1103/PhysRevD.95.084047
Leitherer, A., & Giesel, K. (2017). The Schrödinger Equation of the Gowdy Model in Reduced Algebraic Quantum Gravity (Master thesis).
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).
Lanery, S., & Thiemann, T. (2017). Projective limits of state spaces I. Classical formalism. Journal of Geometry and Physics, 111, 6-39. https://dx.doi.org/10.1016/j.geomphys.2016.10.010

Zusätzliche Publikationen (Download BibTeX)

Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).

Zuletzt aktualisiert 2019-24-04 um 10:23