A1 Functional Particle Systems

Exzellenz-Cluster Engineering of Advanced Materials

FAU Kontaktperson:
Peukert, Wolfgang Prof. Dr.-Ing.


Innovative methods for particle formation, formulation and characterization

Development of tailored metallic, semiconducting or insulating particles using highly optimized bottom-up or top-down processes

Properties of particulate systems can be tailored for size, shape,
morphology and surface, and their respective distributions. Tailoring
the related formulation techniques (for example, stabilization,
dispersion, suspension rheology, separation/classification, granulation)
is inadequately understood but of utmost importance to
particulate-based nanotechnology. The integration of the building blocks
by tailoring their microscopic interactions into meso- and macro-scale
structures defines to a large extent the multifunctional properties of
the devices (product engineering). The following processes and
technologies are developed:

  • New methods
    for shape- and size-controlled particle formation, including structured
    particles by spray pyrolysis for catalytic and photonic applications
    (the droplet as a microreactor), oxidation-stabilized metallic and
    non-oxide nanoparticles, shape control by template-based methods (for
    example, in ionic liquids, liquid crystalline phases and emulsions) and
  • Scale-up and optimization of these methods
  • Separation and classification techniques for nanoparticles based on careful control of particle interactions
  • Tailoring structure formation processes by means of microscopic control of the particulate interfaces
  • In-line analysis techniques for particle size (e.g. SAXS) and particle interactions (e.g. non-linear optics)

Zugewiesene Publikationen

Go to first page Go to previous page 1 von 20 Go to next page Go to last page

Egly, S., Fröhlich, C., Vogel, S., Grünewald, A., Wang, J., Detsch, R.,... Vogel, N. (2018). Bottom-Up Assembly of Silica and Bioactive Glass Supraparticles with Tunable Hierarchical Porosity. Langmuir, 34(5), 2063-2072. https://dx.doi.org/10.1021/acs.langmuir.7b03904
Wawra, S., Pflug, L., Thajudeen, T., Kryschi, C., Stingl, M., & Peukert, W. (2018). Determination of the two-dimensional distributions of gold nanorods by multiwavelength analytical ultracentrifugation. Nature Communications, 9(1). https://dx.doi.org/10.1038/s41467-018-07366-9
Wang, J., Mbah Chrameh, F., Przybilla, T., Apeleo Zubiri, B., Spiecker, E., Engel, M., & Vogel, N. (2018). Magic number colloidal clusters as minimum free energy structures. Nature Communications, 9(1). https://dx.doi.org/10.1038/s41467-018-07600-4
Süß, S., Metzger, C., Damm, C., Segets, D., & Peukert, W. (2018). Quantitative evaluation of nanoparticle classification by size-exclusion chromatography. Powder Technology, 339, 264-272. https://dx.doi.org/10.1016/j.powtec.2018.08.008
Kunzmann, A., Gruber, M., Casillas Pacheco, R., Zirzlmeier, J., Stanzel, M., Peukert, W.,... Guldi, D.M. (2018). Singlet Fission for Photovoltaics with 130 % Injection Efficiency. Angewandte Chemie International Edition, 57(33), 10742-10747. https://dx.doi.org/10.1002/anie.201801041
Burger, A., Kunzmann, A., Costa, R.D., Srikantharajah, R., Peukert, W., Guldi, D.M., & Hirsch, A. (2018). Synergy of Catechol-Functionalized Zinc Oxide Nanorods and Porphyrins in Layer-by-Layer Assemblies. Chemistry - A European Journal, 24(31), 7896-7905. https://dx.doi.org/10.1002/chem.201705327
Akdas, T., Walter, J., Gorbet, G., Segets, D., Demeler, B., & Peukert, W. (2017). 2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation. Analyst, 142(1), 206-217. https://dx.doi.org/10.1039/c6an02236g
Thajudeen, T., Walter, J., Uttinger, M., & Peukert, W. (2017). A Comprehensive Brownian Dynamics-Based Forward Model for Analytical (Ultra)Centrifugation. Particle & Particle Systems Characterization, 34(1). https://dx.doi.org/10.1002/ppsc.201600229
Salaheldin, A.M., Walter, J., Herre, P., Levchuk, I., Jabbari, Y., Kolle, J.M.,... Segets, D. (2017). Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. Chemical Engineering Journal, 320, 232-243. https://dx.doi.org/10.1016/j.cej.2017.02.154
Haderlein, M., Güldenpfennig, A., Segets, D., & Peukert, W. (2017). A widely applicable tool for modeling precipitation processes. Computers & Chemical Engineering, 98, 197-208. https://dx.doi.org/10.1016/j.compchemeng.2016.12.007

Zuletzt aktualisiert 2019-26-03 um 16:11