Laser Zentrum Hannover e.V. (LZH)


Research facility

Location:
Hannover, Germany


Research projects with FAU researchers


LIST: LIST - Großflächiger Lichteinfang in der Silizium-basierten Dünnschichtsolarzellen-Technologie - Teilprojekt Simulation
Prof. Dr. Christoph Pflaum
(01/06/2012 - 31/05/2014)


Publications in cooperation with FAU scientists


Reitberger, T., Zeitler, J., Backhaus, C., Hoffmann, G.-A., Wienke, A., Lorenz, L.,... Franke, J. (2019). Modeling, Simulation and Manufacturing of Polymer Optical Waveguides by Using the OPTAVER Process. In Proceedings of the Applied Industrial Optics: Spectroscopy, Imaging and Metrology 2019.
Reitberger, T., Stoll, T., Hoffmann, G.-A., Lorenz, L., Neermann, S., Overmeyer, L.,... Franke, J. (2018). The future of short-range high-speed data transmission: printed polymer optical waveguides (POW) innovation, fabrication, and challenges. Proceedings of SPIE, Proc. SPIE 10751, Optics and Photonics for Information Processing XII. https://dx.doi.org/10.1117/12.2318752
Loosen, F., Backhaus, C., Zeitler, J., Hoffmann, G.-A., Reitberger, T., Lorenz, L.,... Bock, K. (2017). Approach for the production chain of printed polymer optical waveguides–an overview. Applied Optics, 56(31), 8607-8617. https://dx.doi.org/10.1364/AO.56.008607
Hoffmann, G.-A., Wolfer, T., Zeitler, J., Franke, J., Suttmann, O., & Overmeyer, L. (2017). Manufacturing of polymer optical waveguides using self-assembly effect on pre-conditioned 3D-thermoformed flexible substrates. In Freymann G, Schoenfeld WV, Rumpf RC (Eds.), Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X (pp. 1011503). San Francisco, US: SPIE.
Huis in 't Veld, B., Overmeyer, L., Schmidt, M., Wegener, K., Malshe, A.P., & Bartolo, P. (2015). Micro additive manufacturing using ultra short laser pulses. CIRP Annals - Manufacturing Technology, 64(2), 701-724. https://dx.doi.org/10.1016/j.cirp.2015.05.007
Adier, M., Aguilar, F., Akutsu, T., Arain, M.A., Ando, M., Anghinolfi, L.,... Zendri, J.-P. (2014). Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 46(8). https://dx.doi.org/10.1007/s10714-014-1749-4
Bänsch, E., Olmes, A., Brand, M., Raible, M., Lubatschowski, H., Ertmer, W., & Dziuk, G. (1998). Modeling and Numerical Simulation of the Infrared Photoablation Process. In Laser-Tissue Interaction, Tissue Optics, and Laser Welding III (pp. 208-219). Bellingham: SPIE-The International Society for Optical Engineering.
Bänsch, E., Olmes, A., Franke, H.-G., Lubatschowski, H., Raible, M., Dziuk, G., & Ertmer, W. (1997). Modelling of Infrared Soft-Tissue Photoablation Process. Applied Physics B-Lasers and Optics, 65(4-5), 659-666. https://dx.doi.org/10.1007/s003400050328
Bänsch, E., Olmes, A., Franke, H.-G., Raible, M., Lubatschowski, H., Ertmer, W., & Dziuk, G. (1996). Numerical Simulation of Infrared Photoablation. In Laser-Tissue Interaction and Tissue Optics II (pp. 144-154). Vienna, Austria, AT: Bellingham: International Society for Optical Engineering; 1999.

Last updated on 2016-07-06 at 12:43