% Encoding: UTF-8
@COMMENT{BibTeX export based on data in FAU CRIS: https://cris.fau.de/}
@COMMENT{For any questions please write to cris-support@fau.de}
@article{faucris.318888947,
abstract = {We introduce and study the crossing map, a closed linear map of order four acting on operators on the tensor square of a given Hilbert space inspired by the crossing property of quantum field theory. This map turns out to be closely connected to Tomita-Takesaki modular theory; in particular its fixed points define endomorphisms of standard subspaces. We also explain how the crossing property is related to finite index subfactor planar algebras/Q-systems. In the latter case, the crossing map turns out to be a special case of the (unshaded) subfactor theoretical Fourier transform.