quasifree states in order to find out if it is possible to apply the general ideas, coming from algebraic

quantum theory, to the theory of loop quantum gravity.

Starting from the U(1) toy-model of the canonical commutation relation of the holonomy-flux

algebra, underlying loop quantum gravity, we construct a Weyl C^{*}-algebra generated by so-called

Weyl elements that arise from combining holonomies and exponentiated electric fluxes, which are

the canonically conjugated variables of the theory. Quasifree states are a certain notion of Gaussian

states, directly emerging from Weyl algebras. Because it seems to be impossible to establish such

states on the algebra we found, we develop a different notion states that is only Gaussian in one of

the variables and hence is referred to as almost-quasifree states. For such a state, which is Gaussian

in the fluxes, we find a representation on a Hilbert space that combines the Hilbert space of loop

quantum gravity with the Fock space of a scalar field.

For the canonical commutation relation of the actual theory, which involves SU(2) Yang-Mills

holonomies and the corresponding fluxes, we try to generalize our results. It is possible to define

Weyl-like elements for holonomies along a single path and a set of exponentiated fluxes. We work

toward a notion of elements that take care of more distinct edges or even graphs. It is, however,

not clear if these also generate a C*-algebra. Without an underlying Weyl algebra we successfully

generalize the almost-quasifree representation, found for the toy-model, and analyze its properties

by re-deriving the area operator of loop quantum gravity in this new representation.