% Encoding: UTF-8
@COMMENT{BibTeX export based on data in FAU CRIS: https://cris.fau.de/}
@COMMENT{For any questions please write to cris-support@fau.de}
@article{faucris.115373104,
abstract = {In a remarkable numerical analysis of the spectrum of states for a spherically symmetric black hole in loop quantum gravity, Corichi, Diaz-Polo and Fernandez-Borja found that the entropy of the black hole horizon increases in what resembles discrete steps as a function of area. In the present article we reformulate the combinatorial problem of counting horizon states in terms of paths through a certain space. This formulation sheds some light on the origins of this steplike behavior of the entropy. In particular, using a few extra assumptions we arrive at a formula that reproduces the observed step length to a few tenths of a percent accuracy. However, in our reformulation the periodicity ultimately arises as a property of some complicated process, the properties of which, in turn, depend on the properties of the area spectrum in loop quantum gravity in a rather opaque way. Thus, in some sense, a deep explanation of the observed periodicity is still lacking. © 2007 The American Physical Society.},
author = {Sahlmann, Hanno},
doi = {10.1103/PhysRevD.76.104050},
faupublication = {no},
journal = {Physical Review D - Particles, Fields, Gravitation and Cosmology},
peerreviewed = {Yes},
title = {{Toward} explaining black hole entropy quantization in loop quantum gravity},
volume = {76},
year = {2007}
}